

SBNEP-USGS Hydrology Project

Objectives

- Review existing and ongoing investigations
- Summarize the availability of existing hydrologic data
- Identify data gaps and data collection needs for successfully determining recharge, water quality, and constituent loads within the Sarasota Bay watershed

Management Questions

 How do natural versus urbanized hydrologic regimes compare? What are the predevelopment and present hydrologic regimes?

 Are changes in imperviousness impacting runoff volumes to the Bay?

Hypothesis

 As urbanization continues in Florida, does surface runoff increase and recharge to the aquifer decrease because of increases in impervious surfaces caused by the compaction and modification of the natural soils.

Principal Aquifer of Use

General Direction of Flow

Recharge Discharge

Upper Floridan Aquifer

Locations of Hydrogeologic Sections

Section A - A'

Section B - B'

Section B - B'

Section F - F'

Section G - G'

Section H - H'

Section I - I'

Section J - J'

Thickness of the Surficial Aquifer System

in the Surficial Aquifer System

Chlorides in the Intermediate Aquifer System

Potentiometric Heads

Soil Characteristics Affecting the Infiltration of Water

- Porosity or bulk density
- Texture
- Water saturation
- Cultural practices compaction, imperviousness, etc.

Porosity and Bulk Density

Porosity (n) = $V_{total} - V_{solids} / V_{total} \times 100$

(ratio of voids to total volume of soil, as percent)

Bulk density D_d = Weight of oven dried soil sample V_{total}

Relation Between Porosity and Bulk Density

Figure 2: Relationship Between Soil Bulk Density and Soil Porosity

Eau Gallie Soils

- Hydrologic group B/D poorly drained
- Depth to high water table: 6 18 inches
- Bulk density (g/cc)
 - 0 to 22 in: 1.25 1.50
 - 22 to 48 in: 1.45 1.60
 - 48 to 66 in: 1.55 1.70 (clay content 13-31%)
 - 66 to 80 in: 1.45 1.55
- Sandy, siliceous, acidic, spodic horizon, nearly level

Myakka Soils

- Hydrologic group D very poorly drained
- Depth to high water table: 0 12 inches
- Bulk density
 - 0 to 24 in: 1.25 1.45
 - 24 to 42 in: 1.45 1.60
 - 42 to 80 in: 1.48 1.70
- Sandy, siliceous, acidic, spodic horizon, nearly level on broad flatwoods

Hopopaw Soils

- Hydrologic group D very poorly drained
- Depth to high water table: +24 12 inches
- Bulk density
 - 0 to 50 in: 1.35 1.60
 - 50 to 66 in: 1.60 1.70 (clay content 13-28%)
 - 66 to 80 in: 1.50 1.60
- Loamy, siliceous, acidic, spodic horizon, nearly level

Compaction – soil particles pressed together, reducing pore spaces

Figure 1: Change in Bulk Density in the Soil Profile as a Function of Land Use

Soil texture	Ideal bulk density	Root growth affected	Root growth restricted
Sands,			
loamy sands	<1.60	1.69	>1.80
Sandy loam	<1.40	1.63	>1.80
Silty loam	<1.30	1.60	>1.75
Silty clay loam	<1.10	1.55	>1.65
Sandy clay	<1.10	1.39	>1.47

Surface Bulk Density of Earth Materials

Subsurface Compaction from Wheel Traffic

Compaction from Wheel Traffic

Activities That Increase or Decrease Bulk Density

Hypothesis

 As urbanization continues in Florida, does surface runoff increase and recharge to the aquifer decrease because of increases in impervious surfaces caused by the compaction and modification of the natural soils.

