Where freshwater and saltwater systems merge: environmental considerations in Manatee County

> Jay Leverone, Ph. D. Staff Scientist Sarasota Bay Estuary Program

2012 Water School Manatee County Extension Office

Today's Presentation

- Review SBEP development of NNC for Sarasota Bay portion of Manatee County
- Summarize SBEP Pollutant Load Models
- Brief discussion of Sarasota Bay circulation and residence times
- Summarize TBEP NNC for Manatee County waters from Tampa Bay
- Comments on nutrient criteria in tidal creeks

SBEP Mission

"The Sarasota Bay Estuary Program is dedicated to restoring the region's greatest and most important natural asset- Sarasota Bay. The program strives to improve water quality, increase habitat and enhance natural resources of the area for the use and enjoyment to the public."

SBEP Goals

- Improve water (quality)
- Reduce quantity and improve quality of stormwater runoff
- Restore seagrass and shoreline habitats
- Establish an effective management structure
- Increase public access to Sarasota Bay
- Help restore and sustain fish and other living resources

SBEP Technical Advisory Committee made up of local experts with specific knowledge of Sarasota Bay and its watershed

- Sarasota County
- Manatee County
- City of Sarasota
- City of Bradenton
- Town of Longboat Key
- SWFWMD
- FDEP
- NOAA
- US FWS

- Atkins
- Stantec
- VHB
- Jones Edmunds
- Entrix
- Mote Marine Laboratory
- USF
- UF

Basic Approaches to NNC Development

- Mechanistic models
- Stressor-response relationships
- Reference conditions (reference period)

Numeric Nutrient Criteria for Manatee County Estuarine Waters

- Partly derived from the SBEP
- Partly derived from TBEP and the Nitrogen Management Consortium

Sarasota Bay Estuary Program

Bay Segments and their respective watersheds

SBEP NNC Criteria Development Process

- Develop database of water quality and nutrient loads for each bay segment
- Define seagrass and chlorophyll targets for each bay segment
- Define relationships between chlorophyll and nutrient concentrations by segment
- Derive numeric nutrient criteria by bay segment based on chlorophyll thresholds

SEAGRASS TARGETS

- Seagrass coverage provided by SWFWMD
- Seagrass has been steadily increasing over the past 10 years
- Most segments have more seagrass than in 1950
- TAC recommended targets as the greater of the historical (1950) or 2004-2006 average coverage
- Seagrass targets set before the 2008 survey

SBEP seagrass coverage and targets. Unit of measure=acres.					
Bay Segment	Historical (1950)	2004-2006 Average	Seagrass Target		
Palma Sola	1,031	1,015	1,031		
Sarasota	7,269	7,041	7,269		
Roberts	283	348	348		
Little Sarasota*	883	702	702		
Blackburn	273	447	447		
Total	9,739	9,552	9,997		

PALMA SOLA BAY

SARASOTA BAY

Chlorophyll Targets

- Reference period approach.
- Define the period of time that would best reflect the light and nutrient environment for seagrasses during the current period.
- (Dominant seagrass is the slower growing *Thalassia testudinum*).
- 2001 2005 was selected as the reference period for water quality to protect Sarasota Bay seagrasses.

SBEP Chlorophyll a Targets and Thresholds

Bay Segment	Target Chlorophyll a (µg/L)	Inter-annual Variability (1 SD of Annual Means)	Threshold Chlorophyll a (µg/L)
Palma Sola	8.5	3.3	11.8
Sarasota	5.2	0.9	6.1
Roberts	8.2	2.8	11.0
Little Sarasota	8.2	2.2	10.4
Blackburn	6.0	2.2	8.2

Figure 7. Annual mean chlorophyll concentrations in Palma Sola Bay.

SBEP Chlorophyll *a* – TN Relationships

- Roberts Bay, Little Sarasota Bay. and Blackburn Bay – regressions of [TN] on chlorophyll *a* were significant.
- Sarasota Bay significant multivariate relationship identified between chlorophyll *a* and [TN], color and region of the bay.
- Palma Sola Bay poor relationship; criteria based on reference period of 2001-2005.

SBEP Recommended TN Criteria

Bay Segment	TN Criteria (mg/L)
Palma Sola	0.93
Sarasota	Dependent upon observed color; for the period 1998-2009 the criteria would vary between 0.28 - 1.34 mg/L
Roberts	0.54
Little Sarasota	0.60
Blackburn	0.43

Year	Palma Sola Bay	Sarasota Bay	Roberts Bay	Little Sarasota Bay	Blackburn Bay
1996	Yes	Yes			
1997	Yes	Yes			
1998	No	Yes	Yes	Yes	Yes
1999	Yes	Yes	Yes	Yes	Yes
2000	Yes	Yes	Yes	Yes	Yes
2001	Yes	Yes	No	No	No
2002	Yes	Yes	Yes	Yes	Yes
2003	No	Yes	Yes	Yes	Yes
2004	Yes	Yes	Yes	Yes	Yes
2005	Yes	Yes	Yes	Yes	Yes
2006	Yes	Yes	Yes	Yes	Yes
2007	Yes	Yes	Yes	Yes	Yes
2008	Yes	Yes	Yes	Yes	Yes
2009		Yes	Yes	Yes	Yes

Additional NNC Reports

- TP and Loadings Criteria
- Characteristics of DO in Sarasota Bay Related to the FDEP DO Standard
- Downstream Protection Values (DPVs)
- Implementation Issues
- Tidal Creek Issues

Modeling Pollutant Loads

Pollutant Load Modeling

- Summary of Loading Estimates to Sarasota Bay Segments.
- Comparison of Loading Estimates between SIMPLE-MONTHLY and CDM Models.
- Analysis of Chlorophyll a and Loading Relationships in Blackburn, Little Sarasota and Roberts Bays.

<u>Spatially</u> Integrated <u>Model for</u> Pollutant Loading Estimates (SIMPLE)

 Developed by Jones-Edmunds and Associates for Sarasota County

GIS-based model

Expanded Model Universe

- Used existing input data for Sarasota County
- Expanded temporal coverage to include 1988-2008
- Expanded spatial coverage to include all 5 Bay Segments including Manatee County basins

SIMPLE Basins

- Estimate generated for 5 bay segments within the SBEP watershed
 - Palma Sola Bay
 - Sarasota Bay
 - Roberts Bay
 - Little Sarasota Bay
 - Blackburn Bay

Map Publication No. A10 00101

Nutrient Loading Estimates

- Monthly loads
- Total loads for TN, TP, TSS, BOD and hydrologic loads
- Source-specific loads from:
 - Runoff
 - Point Source
 - Septic tanks
 - Groundwater
 - Irrigation
 - Atmospheric deposition (estimated externally)

Results

Comparison to Camp Dresser & McKee Model (1992)

- Pollutant loading model for SBEP to quantify nutrients and metals by point and non-point sources
- Pollutant loads estimated for three different scenarios:
 - Existing conditions
 - Five year build-out
 - Twenty year build-out

Comparison between the SIMPLE and CDM model estimates

	AR	EA		TOTAL NITROGEN				T	OTAL PHC	SPHOR	US			
	(acr	es)	(pou	inds)	(lb/	'ac)	(mg	;/L)	(pou	nds)	(lb/	ac)	(mg	:/L)
	SIMPLE	CDM	SIMPLE	CDM	SIMPLE	CDM	SIMPLE	CDM	SIMPLE	CDM	SIMPLE	CDM	SIMPLE	CDM
Palma Sola Bay	7,727	9,224	70,398	80,670	9.11	8.75	1.32	1.31	15,355	16,460	1.99	1.78	0.29	0.27
Sarasota Bay	25,164	21,890	232,253	265,520	9.23	12.13	1.32	1.65	49,413	55,380	1.96	2.53	0.28	0.35

Caveats about comparing the two models.

- 1. Boundaries are different
- 2. Rainfall Calculations
- 3. Atmospheric Deposition

Sarasota Bay Residence Time

- Box model to estimate hydraulic (pulse) residence times within Bay segments
- Based on observed salinity distributions and estimated freshwater inflows
- Assumed all waters were well mixed vertically
- Predicated on a well-defined flow path for freshwater beginning at the head of the estuary

Box Model Schematic For Sarasota Bay Segments

Conceptual Model for Residence Time Estimation

Median Annual Pulse Residence Time (Based on 1994 – 2007 Conditions)

Bay Segment	Pulse Residence Time (Days)
Palma Sola Bay	35.8
Sarasota Bay	28.8
Roberts Bay	2.8
Little Sarasota Bay	19.2
Blackburn Bay	3.0

Tampa Bay Estuary Program

Four Mainstem Segments

Tampa Bay Nitrogen Management Paradigm

TAMPA BAY ESTUARY PROGRAM

- Established seagrass targets in 1995
- Established chlorophyll a targets in 1996
- Developed Reasonable Assurance in 2002; updated in 2010
- Developed proposed numeric nutrient criteria in 2010

SEAGRASS TARGETS

- Based on historical (ca. 1950) and recent seagrass coverages
- Segment-specific
- Accounted for non-restorable areas

A method to account for the influence of variation in the hydrologic loads was needed.

Hydrologic Normalization:

Adjust Annual TN Load by the Hydrologic Load

Nitrogen Delivery Ratio=TN Load/Hydrologic Load

Tampa Bay Estuary Program

Boca Ciega Bay Terra Ceia Bay Manatee River

Seagrass Acreage

Terra Ceia Bay

Segment-specific chlorophyll a targets and thresholds

Segment	Chlorophyll a Target (µg/L)	Chlorophyll a Threshold (µg/L)
Terra Ceia Bay	7.5	8.7
Manatee River	7.3	8.8

Segment-specific TN loading targets

Segment	TN Load Target (tons/year)
Terra Ceia Bay	36
Manatee River	503

TBEP estuarine NNC expre (tons TN per mill based on 199	essed as Nitrogen Delivery Ratio ion m ³ hydrologic load) 92-1994 conditions.
Segment	Nitrogen Delivery Ratio Threshold (tons/million m³)
Terra Ceia Bay	1.10
Manatee River	1.80

Water Quality Criteria for Tidal Creeks

- Questions have been raised as to whether the numeric nutrient criteria proposed for the estuary proper should apply to tidal creeks that drain to the estuary
- Tidal creeks play an integral role in the ecological function of coastal estuaries
- Treatment of tidal creeks in implementing estuarine numeric nutrient criteria is, therefore, a significant issue

- NNC established for tidal creeks must consider the different ecological processes and functions that distinguish them from both from the freshwater systems upstream and the open estuary downstream
- Therefore, the SBEP recommended that unique NNC be established for tidal creeks

Sarasota Bay Macroalgae Study

- Collect macroalgae seasonally throughout Sarasota Bay
- Identify taxa and process for stable N isotope analysis to identify N source(s)
- Calculate %N, %C, and C:N ratio to gauge Nlimitation
- Collect physical and biological data

δ15N July 2009

Project Support: Sarasota County, Manatee County

